Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Frontiers in nutrition ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1661239

ABSTRACT

Sleep disturbances have been the hallmark of the recent coronavirus disease 2019 pandemic. Studies have shown that once sleep is disrupted, it can lead to psychological and physical health issues which can, in turn, disrupt circadian rhythm and induce further sleep disruption. As consumers are trying to establish healthy routines, nutritional and preclinical safety investigation of fermented hispidin-enriched Sanghuangporus sanghuang mycelia (GKSS) as a novel food material for spontaneous sleep in Sprague-Dawley rats is conducted for the first time. Results showed that the nutritional analysis of GKSS including moisture, ash, crude lipid, crude protein, carbohydrate, and energy were found to be 2.4 ± 0.3%, 8.0 ± 2.5%, 1.7 ± 0.3%, 22.9 ± 1.2%, 65.1 ± 3.1%, and 367.1 ± 10.2 kcal/100 g respectively. In the 28-day repeated-dose oral toxicity study, only Sprague-Dawley male rats receiving 5 g/kg showed a slight decrease in feed consumption at week 3, but no associated clinical signs of toxicity or significant weight loss were observed. Although a significant reduction of the platelet count was found in mid- and high-dose GKSS treated male groups, such changes were noted to be within the normal range and were not correlated with relative spleen weight changes. Hence, the no observed adverse effect level (NOAEL) of GKSS was identified to be higher than 5 g/kg in rats. After the safety of GKSS is confirmed, the sleep-promoting effect of GKSS ethanolic extract enriched with hispidin was further assessed. Despite 75 mg/kg of GKSS ethanolic extract does not affect wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep, GKSS ethanolic extract at 150 mg/kg significantly decreased wakefulness and enhanced NREM and REM sleep. Interestingly, such effects seem to be mediated through anti-inflammatory activities via NF-E2-related factor-2 (Nrf2) signaling pathway. Taken together, these findings provide the preliminary evidence to studies support the claims suggesting that GKSS contained useful phytochemical hispidin could be considered as and is safe to use as a functional food agent or nutraceutical for relieving sleep problems mediated by Nrf2 pathway, which the results are useful for future clinical pilot study.

2.
BMC Complement Med Ther ; 21(1): 295, 2021 Dec 05.
Article in English | MEDLINE | ID: covidwho-1555692

ABSTRACT

BACKGROUND: Sleep disruption is a major public health issue and may increase the risk of mortality by ten-folds if an individual is sleeping less than 6 h per night. Sleep has changed dramatically during to the COVID-19 pandemic because COVID symptoms can lead to psychological distress including anxiety. Hericium erinaceus mycelium has been widely investigated in both the in vivo studies and clinical trials for its neuroprotective functions because the mycelium contains hericenones and erinacines, which synthesize the nerve growth factor and brain-derived neurotrophic factor (BDNF). Recent in vivo reports have shown showed that erinacine A-enriched Hericium erinaceus mycelium can modulate BDNF/TrkB/PI3K/Akt/GSK-3ß pathways to induce an antidepressant-like effect. A large body of evidence indicates that erinacine can pass the blood-brain barrier and suggests its neuroprotective function in both peripheral and central nervous systems. Thus, Hericium erinaceus mycelium may be a dual-function supplement for sleep disruption improvement while sustaining anxiolytic effects. METHOD: To simulate the condition of sleep disruption, the mice were subjected to the tail suspension test (TST) for 15 min every day during the same period for nine consecutive days. Two different doses (75 and 150 mg/kg) of Hericium erinaceus mycelium were administered orally 20 min prior to the TSTs before entering the light period of 12:12 h L:D cycle. All sleep-wake recording was recorded for 24 h using electroencephalogram and electromyogram. The elevated-plus-maze and open-field tests were conducted to record the behavior activities. RESULTS: Consecutive TSTs prior to the light period could cause significant sleep disturbance and anxiety behavior in the elevated-plus-maze experiments. Results showed that administration with Hericium erinaceus mycelium at 150 mg/kg ameliorated the rodent anxiety (p < 0.05) and reversed the TST-induced NREM sleep disturbance in the dark period. CONCLUSION: This is the first in vivo study suggesting that Hericium erinaceus mycelium has a dual potential role for anxiety relief through improving sleep disruptions.


Subject(s)
Anxiety/metabolism , Biological Products/pharmacology , Hericium , Mycelium , Sleep/drug effects , Animals , COVID-19 , Disease Models, Animal , Mice , Mice, Inbred C57BL , Sleep Wake Disorders/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL